Соединяя
науку и технологии office@sernia.ru
+7 (495) 204-13-17
8 (800) 301-13-17

Просвечивающая электронная микроскопия

предыдущий следующий
17 Декабря 2015

Transmission electron microscopy

Увеличение просвечивающего микроскопа

В просвечивающей электронной микроскопии, ПЭМ (Transmission electron microscopy,ТЕМ) электроны ускоряются до 100 кэВ или выше (до 1 МэВ), фокусируются на тонкий образец (толщиной менее 200 нм) с помощью конденсорной линзовой системы и проходят через образец либо отклоняясь, либо не отклоняясь. Основными преимуществами ПЭМ являются высокое увеличение, в пределах от 50 до 106, и ее способность получать как изображение, так и дифракционную картину с одного и того же образца.

Рассеяние, претерпеваемое электронами во время прохождения через образец, определяет вид получаемой информации. Упругое рассеяние происходит без потерь энергии и позволяет наблюдать дифракционные картины. Неупругие столкновения между первичными электронами и электронами таких неоднородностей образца, как границы зерен, дислокации, частицы второй фазы, дефекты, вариации плотности и т.д., приводят к сложным процессам поглощения и рассеяния, которые ведут к пространственным вариациям интенсивности прошедших электронов. В ПЭМ можно переключаться из режима формирования изображения образца в режим регистрации дифракционной картины путем изменения напряженности поля электромагнитных линз.

Высокое увеличение или разрешение всех просвечивающих электронных микроскопов является результатом малой эффективной длины волны электрона X, которая задается соотношением де Бройля: 
yh.png
где m и q - масса и заряд электрона, h - постоянная Планка, а V - ускоряющая разность потенциалов.Например, электроны с энергией 100 кэВ характеризуются длиной волны 0,37 нм и способны эффективно проникать через слой кремния толщиной ˜0,6 мкм. 

Разрешение просвечивающего микроскопа

Чем больше ускоряющее напряжение просвечивающего электронного микроскопа, тем выше его латеральное пространственное разрешение. Теоретический предел разрешения микроскопа пропорционален λ3/4. Просвечивающие электронные микроскопы с высоким ускоряющим напряжением (на­пример, 400 кВ) имеют теоретический предел разрешения менее 0,2 нм. Высоковольтные просвечивающие электронные микроскопы обладают дополнительным преимуществом - большей глубиной проникновения электронов, так как высокоэнергетичные электроны слабее взаимодействуют с веществом, чем низкоэнергетичные электроны. Поэтому на высоковольтных просвечивающих электронных микроскопах можно работать с более толстыми образцами. Одним из недостатков ПЭМ является ограниченное разрешение по глубине. Информация о рассеянии электронов в ПЭМ-изображениях исходит из трехмерного образца, но проецируется на двухмерный детектор. Следовательно, информация о структуре, получаемая вдоль направления электронного пучка, взаимонакладывается на плоскости изображения. Хотя основной проблемой метода ПЭМ является подготовка образцов, она не столь актуальна для наноматериалов.

Дифракция от ограниченной области (SAD) предлагает уникальную возможность определения кристаллической структуры отдельных наноматериалов, например нанокристаллов и наностержней, и кристаллической структуры отдельных частей образца. При наблюдении дифракции от ограниченной области конденсорные линзы дефокусированы для создания параллельного пучка, падающего на образец, а для ограничения объема, участвующего в дифракции, используется апертура. Картины дифракции от ограниченной области часто используются для определения типа решеток Браве и параметров решеток кристаллических материалов по алгоритму, аналогичному используемому в РД [1]. Несмотря на то, что ПЭМ не способна различать атомы, электронное рассеяние исключительно чувствительно к материалу мишени, и для химического элементного анализа разработаны различные виды спектроскопии. К ним относятся энерго-дисперсионная рентгеновская спектроскопия (EDAX) и спектроскопия характеристических энергетических потерь электронов (EELS).

Просвечивающий электронный микроскоп и нанотехнологии

В нанотехнологии ПЭМ используется не только для диагностики структуры и химического анализа, но и для решения других задач. Среди них - определение температур плавления нанокристаллов, когда электронный луч используется для нагрева нанокристаллов, а точка плавления определяется по исчезновению электронной дифракционной картины. Другим примером является измерение механических и электрических параметров отдельных нанонитей и нанотрубок. Метод позволяет получить однозначную корреляцию между структурой и свойствами нанонитей. 

Гочжун Цао Ин Ван, Наноструктуры и наноматериалы: синтез, свойства и применение – М.: Научный мир, 2012


Заявка на ПЭМ