Соединяя науку и технологии office@sernia.ru
пн-пт 10:00 – 19:00
сб-вс выходные
+7 (495) 204 13 17
8 (800) 301 13 17

Методы ЭДС и СХПЭЭ (EELS)

ЭДС и СХПЭЭ

Энергодисперсионная рентгеновская спектроскопия

Детекторы ЭДС и СХПЭЭ для энергодисперсионного анализа в сканирующей электронной микроскопии

Элементный анализ в просвечивающем электронном микроскопе может производиться с помощью энергодисперсионной спектроскопии ЭДС (EDS), либо с помощью спектроскопии характеристических потерь энергии электронов СХПЭЭ (EELS). Разберем подробно и сравним каждый из методов в статье.

Ранее считалось, что метод спектроскопии характеристических потерь энергии электронов (СХПЭЭ, EELS) по сравнению с методом энергодисперсионной спектроскопии (ЭДС, EDS) эффективен только для анализа легких элементов, и бесполезен для количественного анализа. 

Но за последнее время точность анализа методом СХПЭЭ была значительно улучшена благодаря повышению характеристик детекторов и использованию в микроскопах электронных пушек с полевой эмиссией. Таким образом, в настоящее время метод СХПЭЭ стал привлекать большое внимание для новых приложений, например, таких как картирование элементного состава.

ЭДС анализ в ПЭМ (TEM)

ЭДС анализ может быть выполнен как с помощью сканирующего электронного микроскопа, так и помощью просвечивающего электронного микроскопа. В ЭДС анализе, осуществляющегося с помощью СЭМ, пучок электронов высокой энергии падает на объем образца. Такое взаимодействие может легко ухудшить пространственное разрешение ЭДС анализа при высоких ускоряющих напряжениях электронного пучка. ЭДС на основе ПЭM по своей сути обладает лучшим пространственным разрешением для ЭДС анализа, потому что объем взаимодействия ограничен толщиной образца, исследуемого в ПЭМ, как показано на рисунке 1.

ЭДС_часть 4_рис 1.jpg

Рис.1. Сравнение объема взаимодействия в тонком образце для ПЭМ и в объемном образце в СЭМ. Электроны могут проникнуть глубоко на 8 мкм в объем образца при 30 кэВ и ухудшить пространственное разрешение. В тонком материале объем взаимодействия ограничен толщиной образца (от нескольких десятков до сотен нм).


Характеристическое рентгеновское излучение, генерируемое одним элементом, легко поглощается другим элементом, присутствующим в том же объеме вещества. Эталонный образец с известным составом необходим для полноценного количественного анализа. Использование современных детекторов позволяет фиксировать и количественно анализировать элементы до бора (рис.2).



ЭДС_часть 4_рис 2.jpg

Рис.2. Принцип работы ЭДС детектора


При анализе отказов метод ЭДС обычно используется для выявления элементного состава дефектов. Такой анализ может быть легко запутан ложными сигналами рентгеновского излучения от материалов, окружающих дефект. Например, медные сетки, обычно используемые для поддержания и манипулирования образцами в ПЭМ. 

Часто спектр от тонкого образца в ПЭМ, поддерживаемого такими сетками, отображает фоновые медные пики. Рентгеновский медный сигнал в этих спектрах обычно генерируется как результат, полученный от электронов, рассеянных образцом, взаимодействующим с медной решеткой. Если область интереса также состоит из меди, фон медного сигнала может привести к неоднозначным результатам. 

Данная проблема может быть устранена с помощью использования сетки, изготовленной из другого элемента (например, молибдена или никеля). Когда ложный сигнал присутствует, состав интересующего объекта может быть определен путем сравнения интенсивности пиков в спектрах от дефекта и области, прилегающей к дефекту.

Спектрометр SuperX для ЭДС анализа

Спектрометр SuperX создан, чтобы дополнять просвечивающие электронные микроскопы и максимально оптимизирован под особенности конструкции объективных линз и держателей. В детекторе SuperX применена инновационная технология безоконного кремниевого дрейфового детектора, позволяющая значительно повысить чувствительность к легким элементам. Для обеспечения максимального телесного угла сбора спектрометр SuperX включает сразу 4 детектора, расположенных с четырех сторон относительно образца. Вам больше не нужно наклонять образец в сторону детектора, чтобы получить оптимальную чувствительность. 

Для того, чтобы добиться лучших параметров для ЭДС анализа, появилась необходимость в радикально новой системе обнаружения детектирования рентгеновских лучей излучения. Было выявлено, что чистая скорость счета рентгеновских лучей зависит не только от эффективности сбора (установленной системой детектора), но также и от скорости генерации счета (установленной током пучка). Конструкция, которая учитывает обе эти потребности, показана на рисунке 3.


ЭДС_часть 4_рис 3.jpg

Рис.3. Принцип работы Super-X


Основным преимуществом конструкции Super-X является большой телесный угол для сбора рентгеновских лучей, обеспечиваемый четырьмя SDD-детекторами, симметрично расположенными вокруг образца. Наклон образца - еще одно важное преимущество. Превосходный отклик Super-X возникает потому, что под любым углом наклона по крайней мере 2 детектора почти полностью освещены, а 2 других детектора освещены> 50% (рис.4.).

ЭДС_часть 4_рис 4.png

Рис.4. Преимущество конструкции Super-X

 

Спектроскопия характеристических потерь энергии электронами СХПЭЭ (EELS)

Спектроскопия характеристических потерь энергии электронов как метод исследований был разработан Дж. Хиллером и Р.Ф. Бейкером в середине 40-х годов 20 века. Однако широкое распространение СХПЭЭ получила лишь с середины 1990-х благодаря стремительному развитию компьютерных технологий, вакуумной техники и просвечивающей электронной микроскопии. 

Подключаемые к ПЭМ спектрометры характеристических потерь энергии электронов позволяют исследовать спектры фононных колебаний и зонную структуру образцов, проводить элементный и фазовый анализ состава материалов. 

В СХПЭЭ упруго (без потерь) и неупруго (с потерей энергии) рассеянные электроны из интересующей области в образце направляются в спектрометр, прикрепленный к нижней части колонны ПЭМ. Спектрометр состоит из секторного магнита и системы детектирования. Секторный магнит отклоняет прошедший электронный пучок на 90 градусов (риc. 5). Во время этого процесса электроны с разными энергиями отклоняются в разной степени магнитным полем. Процесс приводит получению спектра потерь энергии электронов.

ЭДС_часть 4_рис 5.jpg

Рис.5. Принцип работы СХПЭЭ


Количество энергии, потерянной неупруго рассеянными электронами или «потеря энергии» электронов зависит от различных неупругих процессов рассеяния, которые происходят внутри образца. 

В процессе неупругого рассеяния электроны из падающего луча теряют энергию из-за взаимодействия с внутренней электронной оболочкой (K, L…) атомов. Эти потери энергии электронами появляются как ступень или грань в режиме более высоких потерь энергии (выше 40 эВ до нескольких тысяч эВ) EEL спектра и упоминаются как энергия ионизации. Энергия ионизации отражает атомную структуру элемента и является полезной характеристикой для элементного анализа. 

Также важно отметить, что в анализе присутствуют фоновые значения. Толщина фона увеличивается с толщиной образца. В толстых образцах фоновый сигнал может достигать чрезвычайно больших чисел, и отображать СХПЭЭ, основанный на подобном элементном анализе, нецелесообразно. 

СХПЭЭ является прекрасным дополнением к ЭДС, которая относительно проста в применении и чувствительна к тяжелым элементам. Спектроскопия характеристических потерь энергии электронов - более сложный метод, предназначенный для работы с тонкой структурой спектров и определения не только атомного состава, характера химических связей, валентности атомов, свойств валентной зоны и полосы проводимости, но и поверхностных свойств различных материалов. 

СХПЭЭ прекрасно себя показала при анализе легких элементов, аналитические пики которых лежат в области энергий до 2 кэВ. Пространственное разрешение при анализе методом СХПЭЭ определяется диаметром электронного пучка и может достигать долей нанометра.

Сравнение детекторов СХПЭЭ (EELS) и ЭДС (EDS) 

  • ЭДС на основе ПЭМ обеспечивает превосходное пространственное разрешение благодаря уменьшенному объему взаимодействия в утоненном образце для ПЭМ (~ 20 нм до 250 нм). Тем не менее, когда электронный пучок падает на образец, рентгеновские фотоны, несущие элементную информацию об элементном составе образца, распространяются по всем направлениям пространства. На практике только часть этих рентгеновских фотонов собирается рентгеновским детектором из-за трудностей при установке большого детектора в колонну микроскопа. Исключение составляют только установки с детектором SuperX. EELS спектрометр не имеет этой проблемы, потому что установлен на пути электронного пучка, который проходит через образец, или прикрепляется к нижней части колонны. И, значительно высокий процент электронов, несущих элементную информацию из области интереса, может быть направлен в спектрометр. В результате СХПЭЭ предлагает лучшую эффективность сбора сигнала для обнаружения элементов из очень ограниченного объема материала в интересующей области, которая часто является примером в передовых технологиях с сокращением возможностей устройства. 

  • Несмотря на эти проблемы, ЭДС остается более популярным, чем СХПЭЭ, потому что он может хорошо работать в толстых и несовершенных образцах, обычно встречающихся при анализе неисправностей в полупроводниках. 

  • В последние годы элементный анализ на основе СХПЭЭ стал более популярным в полупроводниковом анализе отказов из-за необходимости анализировать особенности усадочного устройства (меньший объем, который требует более высокой чувствительности) в передовых технологиях. К тому же, достижения в методах подготовки образцов на основе FIB допускают ультратонкую (<50 нм) специфическую пробоподготовку с минимальным повреждением или загрязнением.

Таблица 1. Сравнение ЭДС и СХПЭЭ

Характеристики

ЭДС/EDX

СХПЭЭ/EELS

Разрешение энергетического спектра

 

≈120 эВ

≈0,1 эВ

Поверхностное разрешение

1-2нм

1нм

Пределы концентрации для обнаружения

0,1-0,5%

0,5%

Чувствительность

Анализ лучше проводить на тяжелых материалах

Более чувствителен к легким материалам, чем ЭДС

Полученная информация

Состав, положение примесных атомов, толщина образца

Состав, электронная структура (информация о валентностях), толщина образца


ЭДС_часть 4_рис 6.png

Рис. 6. Сравнение ЭДС и СХПЭЭ

Выводы       

Успех любого элементного анализа зависит от различных практических ограничений, таких как состав анализируемого материала, матрица окружающих элементов, объем анализируемого материала и проблемы подготовки образца. 

Так например, если Вам требуется в ПЭМ произвести элементный анализ образца, состоящего из легких элементов, то используйте детектор СХПЭЭ/EELS, так как он более чувствителен к легким материалам, чем EDX/ЭДС-детектор.   

Относительно сильные стороны СХПЭЭ и ЭДС в ПЭМ должны использоваться путем оптимизации этих факторов и ограничений, и сбор дополнительных данных с использованием двух этих методов для выполнения точного элементного анализа.



*При подготовке статьи были использованы следующие материалы:

  1. J. Ross “Microelectronics Failure Analysis Desc Reference. Sixth Edition” USA: ASM International, 2011. – 660 стр.; 
  2. Д.Синдо, Т. Оикава «Аналитическая просвечивающая электронная микроскопия» Москва: «Техносфера», 2006. – 256 стр. ISBN 5-94836-064-4.

      
Читайте по теме:

Цикл статей об энергодисперсионном анализе. Часть 1 -  энергодисперсионная рентгеновская спектроскопия (ЭДС/EDS/EDX/EDXS).

Цикл статей об энергодисперсионном анализе. Часть 2 -  недостатки энергодисперсионной рентгеновской спектроскопии (ЭДС/EDS/EDX/EDXS).

Цикл статей об энергодисперсионном анализе. Часть 3 -  методы ЭДС и ДРДВ энергодисперсионного анализа в сканирующей электронной микроскопии.